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INTRODUCTION

While the normal impact and perforation of thin plates or those
of intermediate thickness has been extensively investigated both
analytically and experimentally, corresponding studies involving
oblique impact have been reported much less frequently (References
1-11). Penetration of targets at obliquity was treated analytically
in a general fashion by energy methods (Reference 9) and for
cylindro—-conical projectiles by momentum considerations (Reference
12). For spherical strikers, an analytical approach has delineated
regions of perforation and ricochet and corresponding tests have
provided a phase diagram in the plane of initial velocity versus
angle of incidence providing for these two eventualities, but
involving either intact or shattered projectiles or target regions
(References 13 and 14). An experimental program employing 22-
caliber lead bullets fired against pure aluminum and aluminum alloy
plates at velocities of about 400 m/s at angles of incidence up to
about 50 degrees (Reference 15) showed results in reasonable agree-
ment with the predictions of a three—stage phenomenological analysis
(Reference 3) when adjusted to take into account a presented target
area and thickness for an undeviated projectile path. An extensive
experimental investigation of penetration and ricochet of steel
spheres on aluminum targets at obliquity has been conducted previ-
ously elsewhere (Reference 16).

The objective of the present investigation is to provide an
extensive data base of the effect of obliquity on perforation of
both aluminum and steel plates. Hard-steel cylinders of 12.7-mm
(1/2 inch) nominal diameter, either blunt or with a 60-degree
frontal cone, as well as blunt aluminum cylinders of the same dia-
meter were utilized as projectiles. Targets with an effective dia-
meter of 114.3 nm (4 1/2 inches) were clamped in a special holder
whose angular position could be adjusted in increments of 5 degrees
relative to the direction of firing, although the test sequence was
generally spaced at intervals of 10 degrees. It was limited to a
maximum obliquity of 50 degrees by safety requirements that demanded
avoidance of uncontrolled projectile ricochet posing significant
danger to both equipment and personnel.

APPARATUS, INSTRUMENTATION, AND PROCEDURE

Two different ballistic facilities were utilized in the present
investigation. Tests involving initial velocities below about 200
m/s were executed at the University of California, Berkeley, utili-
zing a compressed gas gun with an overall barrel length of 1.40 m.
Two slots with centers 152 mm apart, with the initial port opening
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1.03 m from the breech, served both to inhibit further projectile
acceleration and to measure its muzzle velocity. This was accom—
plished by the signals generated from the interruption of two light
beams focussed on photosensitive elements due to projectile passage,
with pulse separation indicated by a time interval meter. A similar
arrangement was provided for the measurement of the terminal veloc-
ity immediately behind the target, except that the second light ray
was replaced by a zigzag path produced by consecutive reflections of
the beam between a set of inclined mirrors. This covered a plane
perpendicular to the direction of initial projectile travel and
served to insure interruption of the laser ray by the projectile
even though the striker was turned through an initially unknown
angle as the result of perforation for an inclined target. This
device was mechanically isolated from the test stand to avoid its
actuation by spurious transients. Substantial care was also exer-
cised to insure the appropriate setting of both slope and level of
start and stop gates of the recording devices to obtain velocity
measurements accurate within 1 percent. This required the simulta-
neous use of a digital counter and a Biomation digital unit (Gould
Corp., Santa Clara, California) an arrangement which could differen-—-
tiate between the motion of the striker and a preceding plug or
petal (Reference 5).

The target holder, which could be clamped rigidly either to a
test stand with a horizontal surface or on a 5-degree shimming
block, consisted of two parallel circular rings with holes drilled
at 10-degree intervals perpendicular to the direction of projectile
motion. These holes served to accommodate screws fitting into a
plate holder that consisted of two pairs of segments of a plate
annulus and permitted clamping the target in place by the tightening
of another set of screws. In this manner, the target could be
anchored at any desired angle of obliquity in 5-degree increments.

A trough filled with Celotex was placed behind the zigzag light grid
for projectile recovery, and a witness paper marked initially at the
extension of the barrel centerline placed on the front of the
catcher tank permitted the determination of the angle of reflection
based on the deviation from this mark upon entry and the distance
from the paper to the target center. Alternatively, this angle
could be ascertained photographically when camera coverage was
employed. This occurred in a number of cases where the event was
recorded at the rate of 0% frames/s by a Photec IV framing camera
(Photonic Systems, Sunnyvale, California) with the system illumi-
nated by bulbs supplied with 2400 W of power. The vertical location
of the laser net and catcher tank was crucial and required continu-
ous adjustment to allow for the variations in the angle of the pro-
jectile deflection for different impact conditions. A diagram of
the experimental arrangement for these low-velocity tests is

presented in Figure 1.
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NWC TP 6479

The experiments were initiated by emplacement of the projectile
in the breech, closure of the firing end, and activation of the
solenoid that opened the valve between the gas reservoir and the
barrel, thus propelling the striker forward. When the framing
camera was not employed, all other measurements were executed auto-
matically. However, when the camera was utilized, triggering of the
solenoid was produced by an automatic signal emitted by the camera
upon reaching the desired framing rate. This occurred after passage
of about 73 m of the 123-m roll of 16-mm black and white film, which
had an ASA rating of 400.

In several tests, special conical-headed steel projectiles were
fired that incorporated a modified version of the force-measuring
device that was subsequently further refined; the latest changes
were required to accommodate the oblique impact conditions (Refer-
ences 8 and 5). The unit is sketched in Figure 2. The body con-
sists of a hard-steel cylinder of 12.7-mm diameter with a length of
41.3 mm whose rear surface was tapped along the axis with a 7.9-mm
(5/16-inch)-diameter UNC-2B screw thread to a depth of about 26 mm.
The front of this unit consisted of a cone of 60-degree total angle.
A mating steel screw was inserted tightly into the back of the steel
cylinder that still maintained a small air gap at its tip. A 6.35-
mm—diameter X-cut quartz crystal, 0.794 mm thick, was fastened with
conducting epoxy, Eccobond 56C (Emerson and Cuming, Gardena,
California) to the back of the screw shaft, and a 6.35-mm-diameter
steel disc, 2 mm thick, was similarly cemented to the back surface
of the crystal; the latter represented "an inertial mass.” The
joints were cured at 75°C for at least 30 minutes to minimize
resistivity. The screw was inserted into the hole until the tubular
sections were tight. Two copper wires of 0.5-mm-diameter and
lengths somewhat greater than that of the gun barrel were soldered
to the rear of a second steel disk of similar dimensions and pro-
truded backwards from the projectile. This disk was pressed against
the inertial mass by a spring attached to a tail piece suitably
threaded for insertion into the rear of the hollow aluminum
cylinder. A plastic grommet and polymeric coating insulated the
trailing wires from all components of the projectile except their
disk terminal. The other ends of the wires, which were initially
coiled, were taped to the breech end of the grounded gun and were
thus in continuous contact with this device while uncoiling during
the motion of the projectile until subsequent to target perforation.

Each composite striker was carefully checked prior to every shot
to insure the existence of an open circuit between the impact sur-
face and trailing wires (or ground). The target was electrically
insulated; a lead from this plate was attached to the input side of
a Nicolet digital recording oscilloscope, which was triggered by the
interruption of a laser directly in front of the target, while the
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ground side was connected to the gun. The arrangement is shown in
Figure 3. The force transducer was calibrated by firing the projec-
tile into a thin aluminum target in such a manner as to perforate,
but without exiting (See Reference 8). The impulse recorded by the
crystal was equated to the measured initial momentum of the striker
to provide a force calibration. As previously, the observed poten-
tial difference was found to be linearly proportional to the peak
applied force, but substantially different from the value of 3400
N/V, measured and utilized there (Reference 5). Results using the
force transducer were obtained for experiments involving normal
impact on 3.175-mm-thick 2024~0 aluminum targets struck at and just
above the ballistic limit by the 30.5-g projectile.

The ballistic apparatus employed in the gun laboratory of the
Naval Weapons Center (NWC), China Lake, is shown in Figure 4. The
propulsion unit consisted of a powder gun with a 12.7-mm (1/2-inch)-
diameter barrel capable of being evacuated; shots with this device
encompassed the initial velocity range from 300-920 m/s (1,000-3,000
ft/s) for projectiles with a mass up to 37 g. The initial projec-— .
tile velocity was measured from the recorded time elapsed between
the interruption of two light beams traversing the barrel a distance
of 265.5 mm apart, each centered on a photosensitive unit. This
measurement occasionally gave spurious results since products of
combustion sometimes maneuvered ahead of the striker in spite of the
presence at its rear of a plastic gas check. These particles also
prevented the use of a fine copper-wire grid conducting a current
whose breakage triggered the photographic recording device.

Instead, a break circuit was utilized with the conducting unit con-
sisting of a broad copper grid painted on a paper backing held in a
clamp. The individual strips had widths of 1.59 mm (1/16 inch) so
that even a shower of burnt particles would not totally sever the
circuit, but only a complete tearing of the grid upon bullet
arrival. In addition, the gun was fired without evacuation to allow
the air within the barrel to decelerate any combustion products that
moved ahead of the projectile.

The photographic system consisted of a Beckman Whitley KFC-600
six-cell Kerr camera illuminated by a set of individual PEK Xenon
arc lights that could be delayed relative to each other by a maximum
interval of S0 ps with essentially unlimited delay achievable from
circuit interruption to the first cell with a Rutherford Model Al2
digital time delay generator. The controls were adjusted to provide
a minimum of two photographs of the projectile both prior and sub-
sequent to contact with the target. Initial and final velocities
measured from these pictures were accurate to within 2-3 percent.
The determination of the projectile position in the data reduction
from the film was facilitated by a calibration distance of 39.1 mm

12
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FIGURE 3. Schematic of the Experimental Setup for Force
Measurement.
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Photographs of High-Velocity Ballistic Arrangement.

FIGURE 4.
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representing the separation of the tips of a caliper which was sus-
pended near the target center and photographed in each frame.

A witness paper was employed to permit the determination of the
deviation of the projectile path after passage through the target.
The position of the barrel center was scribed on this paper at the
center of the diffracted light pattern generated by a pin source at
the muzzle end. A long catcher tank filled with Celotex permitted
the recovery of the strikers and of those detached portions of the
plate, plug, or petals embedded in this unit. The tank required
continuous vertical adjustment and some tilting to conform to the
deviation of the projectile path due to plate obliquity. Initial
projectile velocity was controlled by the amount of Dupont IMR 4198
powder placed in a standard 50-caliber cartridge that was positioned
behind the projectile in the breech. Firing from a remote location
was executed after automatic cycling of the electrical system.

The majority of the strikers consisted of drill rod with a sur-
face hardness of 53-60 R; and a nominal diameter of 12.3 mm, a
60-degree total tip cone angle, and an overall length of 38.1 mm;
their average mass was 29.1 g. In addition, some blunt hard-steel
and 2024-0 aluminum cylinders of the same diameter were utilized.
When any striker was fired by the powder gun, it was either coated
with a solid film lubricant (Electrofilm, Inc., MIL-L-23398B) or
else coated with copper to reduce gun wear. The copper-coated pro-
jectiles were significantly heavier than their bare counterparts,
with average masses of 30.8 + 0.5 g, 36.7 + 0.5 g, and 14.5+ 0.7 g
for the cylindro-conical and blunt hard steel and the blunt aluminum
strikers, respectively.

All test sequences were limited to a maximum obliquity of
50 degrees due to the presence of the 60-degree conical nose shape
and the protrusion of the target frame. Larger angles of incidence
were certain to produce ricochet, a dangerous condition for both
operators and equipment. In spite of substantial precautions taken
to avoid such a condition, an occasional ricochet did occur, either
from the frontal plate surface or from contact with a support struc-
ture after penetratiom.

Experiments at obliquity were carried out with 3.175- and 6.35-
mm-thick 2024-0 aluminum plates annealed to a Brinell hardness of 48
from an initial heat-treated condition corresponding to a Brinell
hardness of 130 and on two types of mild steel targets designated as
S* and S with a Brinell hardness of 220 and 130, respectively, at
initial velocities ranging from about 90 to 900 m/s. Impacts at
normal incidence were further executed on 2024-0 aluminum plates of
0.80-, 1.59-, 12.7-, and 15.88-, 19.05-, and 25.4~ mm thickness and
on 12.7- or 19.05-mm thick mild steel targets. A special series of
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runs were also conducted on aluminum plates to ascertain the ballis-
tic limit and the velocity corresponding to the first appearance of
miniscule cracks on the distal target side. Runs involving the
instrumented projectile were executed at an initial velocity of
146.3 m/s on 3.175-mm-thick 2024-0 aluminum targets with angles of
incidence ranging from O to 50 degrees. The target plates were fab-
ricated with a 139.7-mm diameter outer ring clamped on a 114.3-mm-
diameter ring. The aluminum specimens were cut from a sheet which
had been hardened to a T351 condition. The plates were now placed
in an oven for 3 hours at 800°F, then exposed to successive reduc-—
tions in temperature of 50°F for 1 hour each until the level of
500°F was attained beyond which they were oven-—cooled to room
temperature. The annealing process took approximately 16 hours.

In the vast majority of instances, even at high initial veloci-
ties, it was possible to recover both the projectile, sometimes
fragmented into several large parts, and cohesive plugs sheared from
the targets, and to ascertain their terminal configuration and mass.
However, individual petals sheared from the plate could usually not
be located.

Contours of numerous targets were measured by means of a profi-
lometer whose sensing element, consisting of a cantilever leaf with
a strain gage mounted on it, passed at a constant speed over the
deformed surface of the struck targets. Vertical deflection was
calibrated by gage blocks. A number of the targets were also sec-
tioned and subjected to metallurgical examination.

METALLURGICAL ANALYSIS

A metallurgical analysis of virgin and post-impacted target
plates was also undertaken to characterize the materials as com-—
pletely as possible prior to testing and to study the penetration
and failure processes more intimately. The inspection of virgin
materials consisted of a visual scan of the surfaces to identify
forming (primarily rolling) patterns, hardness tests, a microstruc-
tural examination of small wedges of material taken from the outer
edges, and, for one material, a spectrographic analysis to identify
the alloy. Post—impact studies consisted of a visual inspection of
fracture surfaces using a microscope with a magnification less than
50 and a microstructural analysis of target sections taken from the
impact areas. Specimens for microstructural examination were cut
from the targets using a high-speed, water-cooled, cut-off wheel to
minimize damage. They were then mounted in Bakelite, ground flat,
and finally polished and etched for viewing with an optical

microscope.
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METALLURGY OF VIRGIN MATERIALS

In all cases, the visual inspection of target surfaces revealed
a distinctive rolling pattern characteristic of plate or sheet
material. All aluminum targets exhibited approximately the same
hardness levels of 87-95 Rockwell H, consistent with values for a
fully annealed 2024-0 alloy. The hardness of the 3.175-mm-thick
steel measured approximately 60 Rockwell B (107 Brinell), a value
representative of a hot-rolled or annealed low-carbon steel. This
was verified by an inspection of the microstructure, which consisted
almost eantirely of fine, equiaxed ferrite grains indicative of a
very low (less than 0.1%) amount of carbon. However, two hardness
values, 74 or 96 Rockwell B (135 or 216 Brinell), were measured on
different 6.35-mm—thick steel plates, which were also differentiated
by the coloring of the oxide coating on the surfaces (bluish-black
for the steel with the lower hardness and reddish-brown for the
other). The microstructure of the former consisted of fine, equi-
axed ferrite grains plus lamellar pearlite colonies consistent with
about 0.2% carbon level, while the microstructure of the second con-
sisted almost entirely of lamellar pearlite colonies with small
amounts of ferrite along the prior austenite grain boundaries. A
spectrographic analysis of the second material identified it as
either SAE 1053, 1060, 1064, or 1065 composition carbon steel.

RESULTS AND DISCUSSION

The nomenclature adopted in defining the geometric and kinematic
parameters involved in the oblique impact tests is indicated in Fig-
ure 5. The results for the low-velocity shots utilizing uninstru-
mented projectiles are presented in Table 1, while the data from the
powder gun experiments, which for the current series of tests
involved only solid strikers, are summarized in Table 2. Runs C-1
to C-49 were executed with bullets sprayed with the solid film
lubricant, while the strikers employed in Runs C-50 to C-121 were
coated with copper. Whenever feasible, both initial and terminal
velocities in the powder gun experiments were determined from the
camera data. A representative series of photographs featuring the
60-degree cylindro-conical hard-steel projectile is shown in Figures
6-12. A sequence of impacts with the blunt striker of the same
material is portrayed in Figures 13-20, and a set of pictures show-
ing the results of collisions with a blunt 2024-0 aluminum cylinder
are exhibited in Figures 21-25. The photographs presented are
limited to impacts at normal incidence and 40-degree obliquity for
reasons of space; both mild steel and soft aluminum targets were
involved with initial velocities ranging from 300 to 920 m/s.

17




NWC TP 6479

FIGURE 5.

NORMAL

INITIAL VELOCITY
FINAL VELOCITY (AFTER PENETRATION)

INITIAL OBLIQUITY ANGLE
FINAL OBLIQUITY ANGLE

Gi - Gf = THE RELATIVE ANGLE BETWEEN THE FINAL
AND THE INITIAL OBLIQUITY ANGLE

Nomenclature Relating to Oblique Impact
of Projectiles on Plates.
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FIGURE 6. Photographic Sequence for Run No. C-52.
Total time interval: 243.4 us.,

FIGURE 7. Photographic Sequence for Run No. C-55.
Total time interval: 248.9 us.
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FIGURE 8. Photographic Sequence for Run No. C-86.
Total time interval: 99.9 us.

FIGURE 9. Photographic ‘Sequence for Run No. C-92.
Total time interval: 98.2 us.
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FIGURE 10.

FIGURE 11.

NWC TP 6479

Photographic Sequence for Run No. C-75.
Total time interval: 150.0 ps.

Photographic Sequence for Run No. C-60.
Projectile embedded; total time interval:
244 .8 us. Gas check detaches from striker
back. :
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FIGURE 12. Photographic Sequence for Run No. C-73.
Total time interval: 125.0 us.

FIGURE 13. Photographic Sequence for-Run No. C-106.
Total time interval: 245.9 us.
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FIGURE 14.

FIGURE 15.

NWC TP 6479

Photographic Sequence for Run No. C-114.
Total time interval: 125.0 us.

Photographic Sequence for Run No. C-108.
Total time interval: 245.0 us.
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FIGURE 16. Photographic Sequence for Run No. C-109.
Total time interval: 244.4 us.

FIGURE 17. Photographic Sequence for Run No. C-98.
Total time interval: 147.2 us.
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FIGURE 18.

FIGURE 19.

NWC TP 6479

Photographic Sequence for Run No. C-118.
Total time interval: 124.7 us.

Photographic Sequence for Run No. C-115.
Total time interval: 149.9 ps.
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FIGURE 20. Photographic Sequence for Run No. C-112.
Total time interval: 174.6 us.

FIGURE 21. Photographic Sequence for Run No. C-105.
Total time interval: 100.0 us.
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FIGURE 22.

FIGURE 23.

NWC TP 6479

Photographic Sequence for Run No. C-110.
Total time interval: 174.9 us.

Photographic Sequence for Run No. C-11l1.
Projectile embedded in target, but produced
petals and sheared out a plug; total time
interval: 173.6 us.
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FIGURE 24. Photographic Sequence for Run No. C-104.
Total time interval: 124.7 us.

FIGURE 25. Photographic Sequence for Run No. C-10l.
Total time interval: 148.9 us.
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The impact shown in Figure 14 resulted in a dual fracture of the
striker, while those presented in Figures 18 and 19 shattered the
projectile completely. The normal collision portrayed in Figure 11
resulted in perforation of the plate by the projectile tip with
embedment of the body, while that shown in Figure 16 embedded the
striker in the plate with no piercing of the distal side, but ounly
the appearance of a bulge in the form of a portion of a sphere with
a circular boundary in the original target plane.

All aluminum cylinders were deformed by the targets in varying
degrees, depending on impact velocity, plate material, and target
thickness. Principal deformation modes included mushrooming and
significant shortening, with occasional severe fracturing. Fig-
ure 23 portrays the interesting situation where the projectile did
not pass through the fairly thick aluminum target, yet produced both
a separated plug and petals. Figure 25, on the other hand, depicts
the case where the projectile both mushroomed and collapsed, shat-
tering small pieces of target and striker over a wide region beyond
the initial plate positionm.

Figures 6-25 permit a comparison of the effect of target mate-
rial, target thickness, and initial velocity at the two angles of
incidence chosen. In general, more debris is produced at higher
velocities on the same target, as evident from the pairing of Fig-
ures 7 and 8, 13 and 14, and 17 and 18, respectively. An examina-
tion of Figures 6 and 7 shows that more debris is produced in the
case of the steel target as compared to aluminum, and that the
former exhibits a cloud only on the distal side. In general, this
situation also prevails with increase in thickness of a given mate-
rial at a specified impact velocity, as documented by the pairing of
Figures 8 and 9, and 13, 15. and 18, respectively, unless the pro-
jectile was embedded (Figure 16). These conclusions apply regard-
less of the angle of obliquity. As expected, the nose shape
produced significant differences in the penetration phenomenon only
near the ballistic limit. Figures 11 and 23 are considered to
represent conditions just below the ballistic limit, while the
events portrayed in Figures 24 and 25 are believed to correspond to
initial velocities barely above this limit.

Figure 26 presents a sequence of photographs for the impact at
30-degree obliquity of a hard-steel cylindro-conical projectile on
a 3.175-mm-thick 2024-0 aluminum target at an initial velocity of
160 m/s taken at a rate of 10" frames/s. This set, which clearly
shows the change in projectile direction toward the plate normal, is
not suitable for analysis beyond initial and terminal velocity meas-
urement, since the nose, whose length is 12.7 mm and which is
responsible for the change of projectile direction, passes through
the target in less than one frame. In order to provide a

35




NWC TP 6479

FIGURE 26. Film Sequence at 30-Degree Obliguity for Run No. B-41
from Framing Camera. Rate: 10  pictures per second.
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(Contd.)

FIGURE 26.
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FIGURE 26. (Contd.)
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reasonable history of this angular change, say of the order of 12-16
frames, it would be necessary to record the event at a rate of about

150,000 frames/s.

Two special series of tests were conducted to ascertain the bal-
listic limit of 3.175 mm thick 2024-0 aluminum targets when struck
by both blunt and 60-degree conically headed projectiles at normal
incidence, and to note the initiation of cracking in 3.175- and
1.78-mm plates of this material. The results are presented in
Table 3 for two different masses of each type of striker. The bal-
listic limit for the 37.7-g blunt and 37.1-g cylindro-conical pro-
jectiles was 87.8 m/s and the range was 82.3 to 88.4 m/s,
respectively; in the second set of experiments, the projectiles
protruded about the same amount over the velocity regime indicated.
The ballistic limits for blunt and cylindro-—conical strikers with
the same mass of 28.9 g were found to be 105.2 m/s and 94.8 m/s.
Other ballistic limits are shown in Figure 27. Some of these (and
succeeding) data points represent merely non-perforation (i.e.,
velocities at or below the ballistic limit).

The variation of the non-dimensional velocity drop (vij - v§)/vy

as a function of angle of incidence is portrayed in Figures 28
through 31 for the impact of the cylindro-conical projectile on

3.175- and 6.35-mm-thick aluminum and mild steel targets for various
initial velocities. In spite of substantial scatter, particularly
near the two extreme limits of the ordinate, the general trend of
these curves is concave upward, with a minimum value exhibited in
the range from 20 to 30 degrees at the higher velocities. The scat-
ter of the data is due to deviations in position determination of
the projectile occasioned both by further velocity reductions beyond
the last Kerr cell photograph if recorded while the projectile was
still passing through the plate, and by inherent scaling and meas-
urement errors as well as yaw. The non-dimensional velocity drop
occurring in blunt steel projectiles impacting aluminum and in blunt
aluminum projectiles striking both types of targets at various
velocities and normal incidence is depicted in Figures 32 and 33 as
a function of target thickmess, while that for blunt steel strikers
impacting both at normal incidence and at 40 degrees obliquity on
steel targets is shown in Figure 34 in similar fashion. Obviously,
greater target depths generate substantial increases in the velocity
difference, with greater effects at lower velocities, but the angle
of incidence within the range covered here appears to play a second-
ary role in the diminution of the projectile speed. Considerable
uncertainty exists concerning the exact values of the ballistic
limits, in view of substantial scatter of the data as may be noted
by inspection of Figures 28 and 31. This parameter is significantly
affected by even the slightest yaw; both the blunt and cylindro-
conical projectiles exhibit different geometries at impact as the
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TARGET
[\ 3.175 mm ALUMINUM

O 3.175 mm MILD STEEL
 6.35 mm MILD STEEL
6 12.70 mm ALUMINUM

O 19.05 mm ALUMINUM

PROJECTILE
CYLINDRO-CONICAL

CYLINDRO—CONICAL
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BLUNT STEEL
BLUNT STEEL

1000 — O 19.05 mm MILD STEEL BLUNT ALUMINUM
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FIGURE 27. Ballistic Limit as a Function of Initial Obliquity for

Various Projectile-Target Combinations.
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result of such motion. However, as shown in Figure 27, an increase in
obliquity for the same target-projectile combination results in only a
slight increase in this limit, which can be linearly related to
obliquity for thin, soft targets. Furthermore, the ballistic limit of
a mild steel target for a cylindro-conical steel projectile impact was
about double that for a 2024-0 aluminum plate.

The final projectile direction, 8, has been plotted in Fig-
ures 35-38 as a function of initial obliquity, 9y, for the perfora-
tion of 60-degree cylindro-conical projectiles fired at various veloc-
ities against 3.175 and 6.35-mm-thick 2024-0 aluminum and mild steel
targets, respectively. The first of these shows a significant concave
upward trend at the lower velocities, indicating the larger changes in
direction with increase in initial obliquity. The plots exhibit a
nearly linear relationship for the higher initial velocities encom-
passed there; a threefold decrease in velocity for the thicker alumi-
num target reduces the final obliquity by about 8 degrees for an
initial angle of incidence of 50 degrees. The data in Figure 38,
encompassing velocities differing by 3:1, are the only information
obtained that can be well represented by a single linear relation.
This set of results applies to targets affording the greatest resis-
tance to penetration at obhliquity employed in the current investiga-
tion. A crossplot of this information for these targets in terms of
the deflected angle, A8, is shown in Figures 39-42. The results
plotted for the change in obliquity, A6, shown in Figures 39-42, are
expected to exhibit a substantial amount of scatter in view of the
sensitivity of the dependent variable on slight errors in measurement.
In particular, the data presented in Figure 41 illustrate the degree
of this scatter to the point where the experimental information can
not even be depicted by a pattern.

Representative terminal target configurations are shown in Fig-
ures 43-60. In general, the conically headed projectile produced
petalling of the target, while the blunt aluminum and steel strikers
generated plugs. Plugs produced by the soft, blunt projectile were
generally hemispherical in shape, with a curved rear surface matching
the mushroomed deformed front portion of the projectile. Plug masses
increased with target thickness, but the previously noted decrease in
the central plug thickness to an asymptote with increasing impact
speed for tests involving normal impact of hard-steel spheres (Refer-
ence 2) could not be totally verified in the present sequence of tests
since efforts were not concentrated on this feature. A special and
intensive investigation is required for an evaluation of the plug mass
and dimensional variations with striker speed. The sharp-nosed pro-
jectiles frequently exhibited a small permanent deformation of the tip
in the ricochet direction under oblique impact conditions against the
thicker steel targets. The perforation phenomenon for Run C-111 (Fig-
ure 61) was highly unusual in that the embedment of the projectile
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FIGURE 43. Embedment of Cylindro-Conical Steel
Projectile in 3.175-mm-Thick Mild
Steel Target. (Run B-45)

produced a perforation that resulted in both petalling and plug for-
mation. The general pattern of target damage in numerous instances
is comparable to that observed in an earlier investigation involving
the perforation of various metallic plates by hard-steel spheres.
For blunt projectiles at normal incidence, rings were separated from
the target, primarily on the exit side, leaving the perforation dia-
meter generally larger on the distal than on the impact face.

Figure 43 shows the embedment of a cylindro-conical striker in a
mild steel target fired at normal incidence, while Figure 44 shows
both surfaces of a thicker aluminum plate subjected to normal impact
of a blunt steel projectile that produced perforation and embedment.
Figures 45 and 46 portray the damage generated at low velocities by
a cylindro-conical striker in the same aluminum target at obliquity;
significant petalling is produced with the portion of the periphery
in the direction of final projectile motion flattened out to form a
lip. Damage to a thicker target of this material by the same bullet
fired at or near normal incidence at a higher velocity is signifi-
cantly less, as shown in Figures 47 and 48. In the first photograph
the distal side of the crater is characterized by a series of serra-
tions, while embedment is'accompanied by a large number of small
petals on the impact side flattened against the target to produce a
leaf-like appearance.‘ Figures 49-54 show the distal side of the
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FIGURE 45. Distal Side of a 3.175-mm=Thick Aluminum
Target After Perforation by a Cylindro-
Conical Steel Projectile. (Run B-35.)

FIGURE 46. Distal Side of a 3.175-mm=Thick Aluminum Tar-
get After Oblique Perforation by a Cylindro-
Conical Steel Projectile. (Run B-36.)
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| (b) Distal Side.
| FIGURE 47. Impact and Distal Sides of a 6.35-mm=Thick

Aluminum Target After Oblique Perforation by
a Cylindro—Conical Steel Projectile. (Run C-9.)
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FIGURE 48.
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(a) Impact Side.

(b) Distal Side.

Impact and Distal Sides of a 6.35-mm-Thick Mild
Steel Target Struck Obliquely by a Cylindro-
Conical Steel Projectile. (Run C-60.)
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(b) Distal Side.
FIGURE 49. Impact and Distal Sides of a 3.175-mm=Thick

Aluminum Target After Oblique Perforation of a
Cylindro—Conical Steel Projectile. (Run C-67.)
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(b) Distal Side.

FIGURE 50. Impact and Distal Sides of a 3.175-mm~Thick
Aluminum Target After Oblique Perforation by a
Cylindro—Conical Steel Projectile. (Run C-22.)
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FIGURE 51.

FIGURE 52.
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Distal Side of a 3.175-mm=Thick Mild Steel
Target After Oblique Perforation by a Cylindro-
Conical Steel Projectile. (Run C-8.)

Distal Side of a 6.35~-mm~Thick Steel Plate
After Oblique Perforation by a Cylindro-
Conical Steel Projectile. (Run C-44.)
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(a) Impact Side.

(b) Distal Side.

175-mm=Thick Mild

Steel Plate After Oblique Perforation by a

Impact and Distal Sides of a 3

FIGURE 53.

(Run C-39.)

Cylindro-Conical Steel Projectile.
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FIGURE 54.

FIGURE 55.

Distal Side of a 6.35-mm=Thick Steel Target
After Oblique Perforation by a Cylindro-
Conical Steel Projectile. (Run C-93.)

B
.

Distal Side of a 6.35-mm=Thick Aluminum
Target After Normal Perforation by a Blunt
Steel Projectile. (Run C-49.)
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FIGURE 56. Distal Side of a 12.7-mm=Thick Aluminum Target
After Normal Perforation by a Blunt Steel
Projectile. (Run C-116.)

FIGURE 57. Distal Side of a 6.35-mm-Thick Steel
Target Struck by a Blunt Steel Pro-
jectile. (Run C-118.)
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FIGURE 58. Distal Side of a 12.7-mm~Thick Mild Steel
Target After Normal Perforation by a Blunt
Steel Projectile. (Run C-115.)
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FIGURE 59. Distal Side of a 12.7=-mm=Thick Aluminum
Target After Normal Perforation by a Blunt
Aluminum Projectile. (Run Cc-119.)
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(b) Distal Side.

FIGURE 60. Impact and Distal Sides of a 6.35-mm=Thick
Steel Target After Normal Perforation by a
Blunt Aluminum Projectile. (Run C-104.)
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targets perforated by the conical striker with increase in target
resistance, initial velocity, and angle of incidence; the same
pattern is observed as previously described.

Perforation of two sizes of aluminum targets shown in Figures 55
and 56 was caused by normal impact at high velocity of a blunt steel
projectile that remained intact. For the same conditions involving
steel targets, the projectile shattered, as shown in Figures 57 and
58. The crater edges of the steel targets on both impact and distal
sides are somewhat more regular than for the case of aluminum.
Finally the use of an aluminum projectile with a blunt front pro-
duced a severe crater distortion, as shown for two of the higher
velocities employed in Figures 59 and 60. Concomitantly, the pro-
jectile is successively shortened and mushroomed as the velocity
increases. This can be seen in Figure 6la which shows severely
mushroomed aluminum projectile embedded in a thick aluminum target.
A combination of plugging and petalling processes resulted from this
particular high-speed impact, as seen in Figure 61b.

The perforation geometry becomes more oval as the obliquity
increases. The major diameter of selected runs, incorporated in
Table 2, ranges from 17.8 to 28 mm for angles of incidence upward of
30 degrees. Exceptionally, Run C-121 exhibits a major diameter of
33 mm, resulting in an aspect ratio of 2.6 for the elliptical
perforation produced by this 40-degree shot.

Central contours of the distal surface of some representative
aluminum targets were obtained by means of the profilometer and are
shown in Figure 62a through c. The difference in petal height is
graphically illustrated for impact at obliquity in the first two of
these diagrams, while the essentially symmetric pattern for normal
impact is portrayed in diagram 62c. Figure 62d shows the succes-
sively larger deformation of an aluminum plate as the impact veloc-
ity of the cylindro-conical striker is increased, with the highest
impact speed generating significant cracks detectable even in this
crude fashion. -

Target damage for some of the special tests is shown in Fig-
ures 63 through 66. The first of these photographs depicts the
damage on the distal side of 3.175-mm~thick aluminum targets as the
velocity of the sharp-pointed striker striking at normal ‘incidence
is successively decreased. An anomaly is found in part 63b of this
composite, which shows substantially more damage than that created
at slightly higher collision speeds. The explanation for this can
only be surmised, but may be due to local inhomogeneities (or weak-
nesses) in the target, experimental errors in initial velocity
determination, or slight deviations from normality in the case of
part a of Figure 63, Figure 64 shows both sides of the plate for

71




NWC TP 6479

(a) Impact Side.

(b) Distal Side.

FIGURE 61. Impact and Distal Sides of a 19.05-mm=Thick
Aluminum Target After Normal Impact by a
Blunt Aluminum Projectile. (Run C-111.)
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FIGURE 62. Central Contours of Perforated or Deformed Targets.
(a) 6.35-mm—-thick aluminum target struck at 30 degrees by
cylindro-conical projectile at 930 m/s (Run C-79). :

(b) 3.175-mm-thick aluminum yarget struck at 40 Degrees by
cylindro-conical projectile at 613 m/s (Run C-73).

(¢) 6.35-mm-thick aluminum yarget struck normally by blunt
aluminum projectile at 918 m/s (Run C-105).

(d) 3.175-mm-thick aluminum targets struck normally by
cylindro—-conical projectile: (1) initial velocity 61 m/s (Run
D-7); (2) initial velocity 46 m/s (Run D-9); (3) initial
velocity 42 m/s (Run D-10).
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(a) v, = 90.2 m/s (Run D-5).

(b) vg = 87.8 m/s (Run D-6).

FIGURE 63. Distal Side of a 3.175-mm~Thick Aluminum
Target for Various Normal Impacts by a
Cylindro-Conical Hard Steel Projectile.
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(d) vy = 45.7 m/s (Run D-9).

FIGURE 63. (Contd.)
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(a) Impact Side.

(b) Distal Side.

FIGURE 64. Impact and Distal Sides of a 3.175-mm-Thick
Aluminum Target Due to Normal Impact by a
Cylindro—-Conical Steel Projectile. (Run D-8,)
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Distal Side of a 3.175-mm-
Thick Aluminum Target Due
to Normal Impact by a
Hemispherically Tipped
Projectile. (Run D-30.)
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(a) vo = 19.4 m/s (Run D-31).

(b) vy = 27.2 m/s (Run D-32).

FIGURE 66. Distal Side of 1.78-mm~-Thick Aluminum
Targets After Normal Impact by a
Cylindro-Conical Projectile.
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an impact that just barely produces surface cracks on the distal
face; the impact side exhibits the typical series of regular small
rectangular petals composed of the metal removed by the indentation
also noted in the vast majority of similar collision situations.
The hemispherical bulge and circumferential shearing discontinuity
of a cap that would be separated at slightly higher velocities,
produced by a hemispherically tipped projectile striking normally at
substantially higher speeds than in the case of Figures 63 and 64,
is clearly shown in Figure 65. This configuration is identical to
those cited in Reference 8 and dramatically illustrates the higher
perforation efficiency of a sharp-pointed bullet in the vicinity of
the ballistic limit. Figure 66 shows incipient and actual cracking
in a similar set of impacts on a thinner aluminum plate. A novel
feature of this group of figures is the presence of a bulge with a
circular circumference in terminal configurations representing
incipient petal formation; this hemispherical contour disappears at
higher impact speeds for both sharp and blunt projectiles striking
at normal incidence when either petal formation or plugging has
reached a stage of maturity.

At lower velocities achievable with the pneumatic gun, plugs
were produced only by the impact of blunt projectiles. The mass of
the buttons separated in the ballistic limit determinations listed
in Table 3 was of the order of 0.9 to 1.0 g. At the higher veloci-
ties of the powder gun, plugs were also generated by cylindro-
conical projectiles. Table 4 summarizes both projectile and plug
data for certain selected high-speed runs. The mass of the recov-
ered central portion of the hole, or "plug,” does not usually cor-
respond to the total mass of the target material removed. Rings and
small petals spalled from the distal side of the target that could
most frequently not be recovered. At the higher velocites, petals
generated by cylindro-conical projectiles not infrequently separated
from the pierced target. At these speeds, the blunt hard-steel pro-~
jectiles burst frequently into fragments and also caused fragmenta-
tion of the harder targets in a number of instances. The blunt
aluminum projectiles shortened and mushroomed under all impact
conditions.

Figures 67 through 72 are photographs of the projectiles, plugs,
and a few other target components; Table 4 contains associated
information. These data may be valuable for purposes of comparison
with possible future analytical predictions of penetration involving
both hard, brittle, or deformable projectiles against targets of
this type, both at normal incidence and at obliquity. No phenomeno-
logical model of cylindrical or cylindro-conical penetration or per-
foration has been developed thus far other than for normal
incidence. ‘ :
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RUN C-06

RUN €-99

FIGURE 67. Projectile and Plug Photographs of Runs C-96,
C-99, and C-100.
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RUN €-100

FIGURE 67. (Contd.)
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-

RUN C-102

FIGURE 68. Projectile, Plug, and Peripheral Target Frag-
ment Photographs of Runs C-102 and C-103.
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RUN C-103

FIGURE 68. (Contd.)
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Projectile and Plug Photographs for Runs C-104,
C-105, and C-106.
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RUN C-106

FIGURE 69. (Contd.)
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CRUN C-107

FIGURE 70.

Projectile and Plug Photographs
c-108, ¢c-112, and C-113.
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RUN C-T112

RUN C-113

FIGURE 70. (Contd.)

88




NWC TP 6479

15

FIGURE 71. Projectile and Plug Photographs for Runs C-115,
c-116, C-118, and C-120.
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RUN C-118

FIGURE 71. (Contd.)

90



NWC TP 6479

Projectile and Plug Photographs for Runs C-119

and C-121.

FIGURE 72.
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FIGURE 72. (Contd.)
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Two force histories measured with the special projectile are
presented in Figures 73 and 74 for the shank embedment and complete
perforation, respectively, of a 60-degree conically headed steel
projectile striking a 3.175-mm—thick 2024-0 aluminum target at
normal incidence. The curves are nearly identical in shape and peak
value, differing only slightly in overall duration and the extent of
the inflection during the rising portion of the curve; the initial
velocities also differ by only about 4 percent. The process up to
the inflection point represents the penetration process up to the
onset of fracture, consisting of striker indentation and target
deflection due to bending and shear. The subsequent increase in
force to the peak value is due to the enlargement of the initial
protrusion accompanied by crack extension and further bulk deforma-
tion of the target. The reduction in the force occurs when the
resistance to the motion of projectile decreases, most likely begin-
ning at the instant of the emergence of the shank. This period is
somewhat shorter than the rising portion, approximately 40 percent
of the total impact duration.

A comparison of these force curves with that generated by the
perforation well above the ballistic limit of a 1.27-mm-thick 2024-0
aluminum plate by a 39.4 g hemispherically-nosed cylindrical steel
projectile of 12.7-mm-diameter shows major similarities in the
shape, but some differences (Reference 8). The former data were
obtained under conditions of plugging, whereas the present informa-
tion pertains to processes involving crack propagation and petal
bending. In consequence, a second knee occurs in the descending
portion of the force curve for the hemispherically nosed striker
that is attributed to a small amount of additional plate deformation
after initial separation of the plug from the target and projectile.
Furthermore, the initial discontinuity during force ascent is
attributable to the initiation of shearing of the plug instead of
the present onset of cracking on the distal side. The rise time of
this curve is approximately one-third of the overall duration.

Since the principal information obtained in this series of tests
concerns the drop in velocity and change in direction of the projec-
tile as the result of target impact, the errors to be expected in
the data will be estimated. The initial velocity was determined
both by the signals generated from the interruption of light beams
traversing the terminal end of the gun barrel and from measurements
of the projectile position in the photographic data. Agreement
between these two modes was generally satisfactory, i.e., within
2 percent; however, in some instances, substantial differences were
found. These can be attributed to (a) spurious early triggering of
the photocells due to the advance of combustion products ahead of
the projectile, (b) planar recording of a three-dimensional event,
so that slight yaw would introduce a discrepancy, estimated at no
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FIGURE 73.

0.1 0.2 0.3 0.4 0.5
TIME, ms

Force History, Normal Impact of 30.5-g, 12.7-mm-
Diameter Hard-Steel Projectile on 3.175-mm-Thick
2024-0 Aluminum Target, Velocity 94.8 m/s. Result
was embedment of shank,
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FIGURE 74.

0.1 0.2 0.3 0.4 0.5
TIME, ms

Force History, Normal Impact of 30.5-g, 12.7-mm—
Diameter Hard-Steel Projectile on 3.175-mm-Thick
2024-0 Aluminum Target, Velocity 98.5 m/s. Result
was complete perforation.
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more than 5 percent, and (c) difficulties in the photographic
results of identifying a common position reference for all pictures
of a set, requiring some adjustments. The last two problems also
apply to the evaluation of the terminal velocity. In consequence,
the photographic results were utilized whenever a discrepancy was
noted. In addition, there were alignment errors in the positioning
of the target relative to the gun and camera and in measurement of
the terminal trajectories from the witness papers. It is estimated
that the maximum error in absolute quantities did not exceed 5 per-
cent and was generally much better. However, parameters involving
differences of quantities with nearly identical magnitude might evi-
dence a substantially greater error. Hence caution should be
utilized when examining the angular variation in the projectile tra-
jectory and the non-dimensional velocity drop in the vicinity of the
ballistic limit.

METALLURGICAL ANALYSIS OF TARGET IMPACT REGIONS

Target plates from six different tests (C-5, C-18, C-48, C-110,
C-122, and C-124, Table 2) were subjected to metallurgical analysis.
These particular tests were considered to be representative for nor-
mal incidence of the impact conditions encountered in this experi-
mental program. This group included two impacts that resulted in
embedment of the striker, one ricochet, two impacts each by conical-
nosed steel, blunt steel, and blunt aluminum projectiles and impacts
involving a range of projectile speeds (305-915 m/s) and against
several different targets (6.35-mm-thick steel, 6.35-, 12.7-, and
19.05-mm~thick aluminum). Unfortunately, due to time constraints,
only one oblique impact could be examined, but the one chosen was
considered to be one of the more interesting in the group.

The vast majority of the impacts in the entire series resulted
in the perforation of the target, and the recovery of ejected target
material was thus only a secondary objective of the experiment.
Consequently, a complete set of ejected target fragments was recov-
ered only where residual (exit) projectile speeds were low or where
target ejecta occurred in the form of one or, at the most, a few
large plug fragments traveling at small angles to the original
flight path. As a result, a metallurgical examination of the entire
target zone affected by the impact could not be carried out for many
shots involving target perforation. Instead, the failure patterns
in the regions adjacent to the perforation hole were closely exam-—
ined in these cases in an attempt to identify the probable failure
processes in the central impact region.

The perforation of target plates by projectiles (particularly
blunt or rounded ones) usually involves punching out a whole or
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fragmented plug of target material (Reference 1). The formation and
ejection of this plug result from shear failures that initiate along
or near the boundary of the impact surface. During impact, these
shear failures are often caused by the initiation and propagation of
very narrow zones of intense plastic deformation within the target,
typically 10-30 microns wide. These localized bands of deformation,
termed concentrated or adiabatic shear bands (References 17-19), are
the result of large temperature gradients that occur in bodies
loaded at very high strain rates when the rate of local heat produc-
tion by mechanical work exceeds the rate of dissipation. These tem—
perature gradients result in isolated hot spots in the body where
thermal softening of the material, yielding, and eventually failure
can initiate. Once started, these tiny yield zones propagate out-—
ward in narrow bands along directions of maximum shear stress pro-
pelled by the same heating/softening/yielding sequence that con-
tinues to develop along the boundaries of the yielded zone. When
fully formed, these zones become planes of weakness where fracturing
can take place.

Among the six targets examined metallurgically, only the 6.35-mm
high-carbon steel contained concentrated shear bands in the impact
region, as shown in Figures 75 and 76. Based on the number of bands
found in the wall adjacent to the perforation hole, it is highly
probable that the plugging perforation process associated with the
impact of a blunt cylinder resulted from the formation of and fail-
ure along concentrated shear bands. In this same target, additional
material in the shape of a ring was also torn away around the edges
of the distal side of the hole. The removal of this peripheral
material involved delamination of the plate, a phenomenon termed
"scabbing” (Reference 1), which occurs in metals and alloys that
have been formed by rolling processes. This process tends to pro-
duce grain and impurity orientations that are retained in varying
degrees after subsequent heat treating operations and result in a
laminated material containing zones of weakness (Reference 20).
Plate materials typically acquire planes of weakness parallel to the
main surfaces. For the particular impact shown in Figure 75, shear
displacements occurred along these planes in and around the impact
area causing delamination of the material there. A ring-like piece
of this delaminated material then became detached from the distal
side by the impact process leaving a crystalline-appearing fracture
surface along the outer periphery. Figure 77 shows a magnified view
of the microstructure along the boundary of this fracture surface.

A few bands of concentrated shear were found in the same target
material when struck by a conical-nosed projectile at a 30-degree
angle of obliquity, as shown in Figures 78 and 79. Although these
clearly did not dominate the fracture process in this situation,
their presence demonstrates the susceptibility of this particular
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FIGURE 75. Section View of One Side of the Crater
in a 6.35-mm Steel Target Perforated by
a 12.7-mm Blunt-Ended Steel Cylinder
Initially Traveling at 883 m/s. Pene-
tration path shown by arrow. (Run C-48.)

target material to localized shear deformations. Target fractures
in this instance appeared to take place largely by petal formation.
Some delamination along one side of the perforation hole also
occurred which involved both shear and tensile modes of separation,
the latter dominating in this instance.

The remainder of the targets examined were annealed 2024 series
aluminum. Two contained an embedded blunt aluminum projectile,
shown in Figures 80 and 81, the second of which had mushroomed upon
impact. The other two were perforated by hard-steel strikers, one
blunt-nosed (Figure 82) and the other conical-tipped (Figure 83).
All of these targets were characterized by the complete absence of
concentrated shear bands around the impact region. Although the
wall adjacent to the central impact zone in one target (Figure 82)
appeared very similar to that seen in the steel target shown in
Figure 75, shear failures in that location did not involve the prior
formation of shear bands. Instead, they looked more like the duc-
tile shear failures presented in Figure 84 that are responsible for
plugging perforations of low—carbon or ductile steel targets (Refer-
ence 21). Concentrated shear bands were found along the impact sur-
face of the blunt aluminum cylinder that had been severely deformed
(mushroomed) within the target, as depicted in Figures 85 and 86.
This may be indicative of the greater degree of deformation experi-
enced by the projectile in this instance and may also reflect dif-
ferences in the initial processing treatments experienced by the
projectile alloy prior to testing compared to the target material.
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FIGURE 76. Micrograph of Concentrated
Shear Band Adjacent to
Impact Crater in the Target
Shown in Figure 75. (400X
magnification.)

P

FIGURE 77. Micrograph of Brittle-Appearing
. Fracture Surface Near the Distal
Side of the Perforation Crater
Shown in Figure 75. (200X
magnification.)
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Section View of the Crater in a 6.35-mm-
Thick Steel Target Struck by a 12.7-mm
Conical-Tipped Steel Cylinder at 30 Degrees
Obliquity and a Speed of 325 m/s. Initial
penetration path shown by arrow (projectile
ricocheted). (Run C-18.)

FIGURE 79. Micrograph of Fractured
Concentrated Shear Band
in the Target Shown in
Figure 78. (200X
magnification.)
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FIGURE 80. Section View of the Crater Formed in a
6.35-mm~Thick Aluminum Target Struck
by a 12.7-mm Blunt—-Ended Aluminum
Cylinder at a Speed of 265 m/s. Pene-
tration path shown by arrow (projectile
embedded and was subsequently removed).
(Run C-122.)
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FIGURE 81. Section View of One Side
of the Crater Formed in
a 25.4-mm-Thiek Aluminum
Target by the Impact of
a 12.,7-mm Blunt-Ended
Aluminum Cylinder at a
Speed of 921 m/s. Pene-
tration path shown by
arrow (projectile embed-
ded and mushroomed).
(Run C-110.)

FIGURE 82, Section View of One Side
of the Crater Formed in
a 12.7-mm-Thick Aluminum
Target Perforated by a
12 .7-mm-Diameter Blunt-
Ended Steel Cylinder
Initially Traveling at
594 m/s. Penetration
path shown by arrow.
(Run C-124.)
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FIGURE 84,

Micrograph of Shear Frac-
ture Adjacent to Impact
Crater in Target Shown in

Figure 82, (100X
magnification.)

NWC TP 6479

FIGURE 83.

103

Section View of One Side
of the Crater Formed in
a 6.35-mm-Thick Aluminum
Target Perforated by a
Conical-Tipped Steel
Cylinder Initially Trav-
eling at 915 m/s. Pene-
tration path shown by
arrow. (Run C-5.)
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FIGURE 85. Micrograph of Concentrated Shear Band Adjacent
to the Impact Surface in a Mushroomed Aluminum
Cylinder Shown in Figure 8l. (100X magnificationm,)

FIGURE 86. Micrograph of Inward Terminus of Concen-
trated Shear Band Seen in Figure 85. (100X
magnification.)
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CONCLUSIONS

Approximately 200 tests were conducted to determine the velocity
drop and change in angular orientation of projectiles striking soft
aluminum and mild and medium-carbon steel plates at angles of oblig-
uity ranging from normal to 50 degrees over the velocity range from
about 20 to 1025 m/s. Impacts in the lower speed range were gener-
ated by a pneumatic device, whereas those above 200 m/s were
achieved by means of a powder gun. The targets, whose thickness
ranged from 1.25 to 25.4 mm, were clamped on a 114.7-mm~diameter
ring in a holder whose configuration prevented employment of greater
angles of attack without the certainty of projectile ricochet. The
strikers were composed of hard-steel or soft aluminum cylinders of
12,7 mm nominal diameter with blunt or 60-degree conical nose shapes
for the former and only blunt noses for the latter.

The ballistic limit of a 3.175-mm—~thick 2024-0 aluminum target
struck by a 60-degreecylindro-conical steel projectile was found to
be about 95 m/s at normal incidence; a slight increase in this value
was noted with increasing obliquity up to 55 degrees. On the other
hand, a 12.7-mm-thick target of this type struck at 40 degrees by a
blunt steel projectile evidenced a ballistic limit of 600 m/s,
whereas the limit for the normal impact of the same striker on a
19.05-mm—-thick plate of this material was 305 m/s. The sharp-nosed
projectile was stopped by a 3.175-mm-thick mild steel target at
195 m/s at normal incidence, whereas a 19.05-mm-thick mild steel
plate exhibited a limit of 905 m/s when struck normally by a blunt
aluminum projectile. The final obliquity angle increased more
rapidly with initial angle of incidence for 3.175-mm-thick aluminum
targets, but varied nearly linearly with this parameter for 6.35-mm-
thick aluminum plates and both thicknesses for mild steel. Photo-
graphs of the crater resulting from projectile embedment or perfora-
tion clearly showed the petalling nature of the phenomenon for
cylindrical noses and the plug removal, together with a brittle band
separation on the distal plate side for blunt-nosed strikers, both
at normal incidence. Obliquity completely alters the petal pattern
for both types of targets, with petals more frequently shorn from
the target plate for aluminum and a somewhat larger number of distal
side petals at low obliquity just above the ballistic limit for
steel. Large angles of obliquity in the latter material produced
lips on the distal side with brittle fracture evident on the
opposite crater side.

The initiation of fracture in thin aluminum plates subjected to
normal incidence by cylindrically tipped projectiles was carefully
studied by slight variation of the initial velocity. The first evi-
dence of deformation was found to be a bulge without a crack evident
on the distal side; the impact side exhibited a conical crater.
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This was followed by crack initiation, generally by two sets of
cracks crossing at right angles, that leads to the familiar four- or
five-petal combination at higher velocities. However, in at least
one case, a single linear crack was formed at a particular speed.
Symmetry of the bulges and holes generated for normal impact was
established by profilometer measurement.

In general, the hard-steel strikers remained intact with either
no or slight plastic deformation as the result of plate perforation.
However, at higher impact speeds with thicker steel targets, these
sometimes broke into a relatively small number of parts. Under
extreme conditions, such strikers shattered and only a small portion
of the rearward sections could be recovered. Aluminum strikers
mushroomed as the result of processes quite similar to the genera-
tion of the Munroe jet. Plugs produced by impact of blunt-nosed
strikers also exhibited some sideways deformation and curved sur-
faces were frequently noted on both lateral edges. An unusual case
of both plugging and petalling of an aluminum target struck normally
by an aluminum projectile was noted at a high initial velocity.

The force histories generated by the impact of a striker at nor-—
mal incidence on a 3.175-mm-thick 2024—0 aluminum target did not
differ significantly under conditions of shank embedment and com-
plete perforation just above the ballistic limit. It is speculated
that the curves will not significantly change at substantially
higher velocity except for the gradual disappearance of the knee
found in the rising portion of the curve that is attributed to crack
initiation. Some similarities and some differences are observed
between these curves and that reported for a hemispherically tipped
cylindrical striker where plugging rather than petalling occurs.

Metallurgical examination of the virgin and perforated targets
indicated preferred orientations of the material, associated with
direction of rolling, which affect the direction of initial crack-
ing. Substantial evidence of shear banding due to localized adia-
batic shear was observed in both projectiles and targets. Propaga-
tion of these zones is considered to be a controlling factor in the
plugging process, whereas petalling and the removal of bands from
distal target surfaces represents a tensile fracture phenomenon.
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